13 research outputs found

    Feedback control of arm movements using Neuro-Muscular Electrical Stimulation (NMES) combined with a lockable, passive exoskeleton for gravity compensation

    Get PDF
    Within the European project MUNDUS, an assistive framework was developed for the support of arm and hand functions during daily life activities in severely impaired people. This contribution aims at designing a feedback control system for Neuro-Muscular Electrical Stimulation (NMES) to enable reaching functions in people with no residual voluntary control of the arm and shoulder due to high level spinal cord injury. NMES is applied to the deltoids and the biceps muscles and integrated with a three degrees of freedom (DoFs) passive exoskeleton, which partially compensates gravitational forces and allows to lock each DOF. The user is able to choose the target hand position and to trigger actions using an eyetracker system. The target position is selected by using the eyetracker and determined by a marker-based tracking system using Microsoft Kinect. A central controller, i.e., a finite state machine, issues a sequence of basic movement commands to the real-time arm controller. The NMES control algorithm sequentially controls each joint angle while locking the other DoFs. Daily activities, such as drinking, brushing hair, pushing an alarm button, etc., can be supported by the system. The robust and easily tunable control approach was evaluated with five healthy subjects during a drinking task. Subjects were asked to remain passive and to allow NMES to induce the movements. In all of them, the controller was able to perform the task, and a mean hand positioning error of less than five centimeters was achieved. The average total time duration for moving the hand from a rest position to a drinking cup, for moving the cup to the mouth and back, and for finally returning the arm to the rest position was 71 s.EC/FP7/248326/EU/MUltimodal Neuroprostesis for Daily Upper limb Support/MUNDU

    Bayesian and frequentist analysis of an Austrian genome-wide association study of colorectal cancer and advanced adenomas

    Get PDF
    Most genome-wide association studies (GWAS) were analyzed using single marker tests in combination with stringent correction procedures for multiple testing. Thus, a substantial proportion of associated single nucleotide polymorphisms (SNPs) remained undetected and may account for missing heritability in complex traits. Model selection procedures present a powerful alternative to identify associated SNPs in high-dimensional settings. In this GWAS including 1060 colorectal cancer cases, 689 cases of advanced colorectal adenomas and 4367 controls we pursued a dual approach to investigate genome-wide associations with disease risk applying both, single marker analysis and model selection based on the modified Bayesian information criterion, mBIC2, implemented in the software package MOSGWA. For different case-control comparisons, we report models including between 1-14 candidate SNPs. A genome-wide significant association of rs17659990 (P=5.43x10(-9), DOCK3, chromosome 3p21.2) with colorectal cancer risk was observed. Furthermore, 56 SNPs known to influence susceptibility to colorectal cancer and advanced adenoma were tested in a hypothesis-driven approach and several of them were found to be relevant in our Austrian cohort. After correction for multiple testing (alpha=8.9x10(-4)), the most significant associations were observed for SNPs rs10505477 (P=6.08x10(-4)) and rs6983267 (P=7.35x10(-4)) of CASC8, rs3802842 (P=8.98x10(-5), COLCA1,2), and rs12953717 (P=4.64x10(-4), SMAD7). All previously unreported SNPs demand replication in additional samples. Reanalysis of existing GWAS datasets using model selection as tool to detect SNPs associated with a complex trait may present a promising resource to identify further genetic risk variants not only for colorectal cancer

    MUNDUS project : MUltimodal neuroprosthesis for daily upper limb support

    Get PDF
    Background: MUNDUS is an assistive framework for recovering direct interaction capability of severely motor impaired people based on arm reaching and hand functions. It aims at achieving personalization, modularity and maximization of the user’s direct involvement in assistive systems. To this, MUNDUS exploits any residual control of the end-user and can be adapted to the level of severity or to the progression of the disease allowing the user to voluntarily interact with the environment. MUNDUS target pathologies are high-level spinal cord injury (SCI) and neurodegenerative and genetic neuromuscular diseases, such as amyotrophic lateral sclerosis, Friedreich ataxia, and multiple sclerosis (MS). The system can be alternatively driven by residual voluntary muscular activation, head/eye motion, and brain signals. MUNDUS modularly combines an antigravity lightweight and non-cumbersome exoskeleton, closed-loop controlled Neuromuscular Electrical Stimulation for arm and hand motion, and potentially a motorized hand orthosis, for grasping interactive objects. Methods: The definition of the requirements and of the interaction tasks were designed by a focus group with experts and a questionnaire with 36 potential end-users. Five end-users (3 SCI and 2 MS) tested the system in the configuration suitable to their specific level of impairment. They performed two exemplary tasks: reaching different points in the working volume and drinking. Three experts evaluated over a 3-level score (from 0, unsuccessful, to 2, completely functional) the execution of each assisted sub-action. Results: The functionality of all modules has been successfully demonstrated. User’s intention was detected with a 100% success. Averaging all subjects and tasks, the minimum evaluation score obtained was 1.13 ± 0.99 for the release of the handle during the drinking task, whilst all the other sub-actions achieved a mean value above 1.6. All users, but one, subjectively perceived the usefulness of the assistance and could easily control the system. Donning time ranged from 6 to 65 minutes, scaled on the configuration complexity. Conclusions: The MUNDUS platform provides functional assistance to daily life activities; the modules integration depends on the user’s need, the functionality of the system have been demonstrated for all the possible configurations, and preliminary assessment of usability and acceptance is promising

    In Situ Enzyme Activity in the Dissolved and Particulate Fraction of the Fluid from Four Pitcher Plant Species of the Genus Nepenthes

    Get PDF
    The genus Nepenthes, a carnivorous plant, has a pitcher to trap insects and digest them in the contained fluid to gain nutrient. A distinctive character of the pitcher fluid is the digestive enzyme activity that may be derived from plants and dwelling microbes. However, little is known about in situ digestive enzymes in the fluid. Here we examined the pitcher fluid from four species of Nepenthes. High bacterial density was observed within the fluids, ranging from 7×106 to 2.2×108 cells ml−1. We measured the activity of three common enzymes in the fluid: acid phosphatases, ÎČ-d-glucosidases, and ÎČ-d-glucosaminidases. All the tested enzymes detected in the liquid of all the pitcher species showed activity that considerably exceeded that observed in aquatic environments such as freshwater, seawater, and sediment. Our results indicate that high enzyme activity within a pitcher could assist in the rapid decomposition of prey to maximize efficient nutrient use. In addition, we filtered the fluid to distinguish between dissolved enzyme activity and particle-bound activity. As a result, filtration treatment significantly decreased the activity in all enzymes, while pH value and Nepenthes species did not affect the enzyme activity. It suggested that enzymes bound to bacteria and other organic particles also would significantly contribute to the total enzyme activity of the fluid. Since organic particles are themselves usually colonized by attached and highly active bacteria, it is possible that microbe-derived enzymes also play an important role in nutrient recycling within the fluid and affect the metabolism of the Nepenthes pitcher plant

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & NemĂ©sio 2007; Donegan 2008, 2009; NemĂ©sio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Growth Patterns of Two Marine Isolates: Adaptations to Substrate Patchiness?

    No full text
    During bottle incubations of heterotrophic marine picoplankton, some bacterial groups are conspicuously favored. In an earlier investigation bacteria of the genus Pseudoalteromonas rapidly multiplied in substrate-amended North Sea water, whereas the densities of Oceanospirillum changed little (H. Eilers, J. Pernthaler, and R. Amann, Appl. Environ. Microbiol. 66:4634–4640, 2000). We therefore studied the growth patterns of two isolates affiliating with Pseudoalteromonas and Oceanospirillum in batch culture. Upon substrate resupply, Oceanospirillum lagged threefold longer than Pseudoalteromonas but reached more than fivefold-higher final cell density and biomass. A second, mobile morphotype was present in the starved Oceanospirillum populations with distinctly greater cell size, DNA and protein content, and 16S rRNA concentration. Contrasting cellular ribosome concentrations during stationary phase suggested basic differences in the growth responses of the two strains to a patchy environment. Therefore, we exposed the strains to different modes of substrate addition. During cocultivation on a single batch of substrates, the final cell densities of Oceanospirillum were reduced three times as much as those Pseudoalteromonas, compared to growth yields in pure cultures. In contrast, the gradual addition of substrates to stationary-phase cocultures was clearly disadvantageous for the Pseudoalteromonas population. Different growth responses to substrate gradients could thus be another facet affecting the competition between marine bacteria and may help to explain community shifts observed during enrichments
    corecore